Here’s some good news for your weekend: Wind power is kicking ass in the US.

That is the TL;DR version of the annual Wind Technologies Market Report just released by the US Department of Energy and Lawrence Berkeley National Laboratory (LBNL).

With 73,992 MW, the US is now the No. 2 country in the world in installed wind capacity (after China, which has a mind-boggling 145,053 MW). And we are No. 1 in actual wind electricity generated.

All that wind only provides about 5.6 percent of US electricity, though, which puts us well behind leaders like Denmark (40 percent), Portugal, Ireland, and Spain (between 20 and 30 percent).

wind 2015 countries penetration

So we’ve got a long way to go to catch up with Denmark (and its amazing energy policies), but we’re making progress.
There’s lots, and I mean lots, more in the report. Here are the three most impressive ways wind is kicking ass.

Wind power is getting cheaper

The cost of electricity from wind has been steadily declining since a high in 2009 and 2010. One way the report measures this is by looking at the cost of power purchase agreements (PPAs), which are contracts between a power consumer and a power supplier to purchase the energy generated by a project over a set period of time.
“After topping out at nearly 7¢/kWh in 2009,” LBNL writes, “the average levelized long-term price from wind power sales agreements has dropped to around 2¢/kWh—though this nationwide average is dominated by projects that largely hail from the lowest-priced central region of the country.”

Here’s the chart:

wind 2015 power purchase agreements cost

As you can see, recent buildout has been dominated by the Interior region, especially Texas, which is the leading US state for wind — boasting, at 17,711 MW of installed capacity, nearly triple the amount of its nearest competitor, Iowa, which has 6,209 MW.

Wind turbines are also getting cheaper, at least relative to their 2009 peak. The chart:

wind 2015 turbine prices

“Overall,” LBNL researchers write, “these figures suggest price declines of 20%–40% since late 2008.” The falling cost of turbines is pushing down the overall installed cost of wind projects, though the details vary significantly among regions and turbine sizes.

Wind turbines are getting better

It’s notable that turbine prices are declining, because turbines are also getting better — bigger, taller, wider, more handsome, you name it. The best way to measure this is to look at a turbine’s “capacity factor” (CF), which refers to how much power a turbine produces relative to its capacity. (A turbine with a nameplate capacity of 2 MW and a CF of 30 percent produces an average of 5.26 GWh a year — 30 percent of what it would have produced had it run continuously at full capacity.)

As towers get taller and blades get bigger, turbines can reach more wind and produce more power; their CFs rise.

This chart shows the CFs of wind projects as of 2015, broken out based on the age of the project:

Capacity factors of wind turbines in 2015

As you can see, wind projects built in 1998-’99 are averaging about 25 percent CF. Projects built in 2014 are averaging 40 percent, with the best ones hitting 50 percent. That’s pretty remarkable.

Author and futurist Ramez Naam has a great post on this. He predicts that average wind turbines will reach 60 percent CF by 2035, and at some of the best sites by 2025.

Wind installations are blowing up

Driven by falling cost, improving performance, and the five-year renewal of the Production Tax Credit (PTC), installations surged in 2015, with 8,598 MW of new wind capacity coming online.

wind 2015 installations

That amounts to 41 percent of all the power capacity added in the US in 2015 — the largest market share of any source of energy, handily beating solar and natural gas.

And the heated pace of installations is expected to continue, especially as developers take advantage of the dwindling PTC. (The PTC is a tax credit given to wind developers based on electricity production from their projects; it is now set to phase out over five years.)

Installations have naturally clustered in the windiest areas. LNBL:

Over the last decade, wind power represented 31% of total U.S. capacity additions, and an even larger fraction of new generation capacity in the Interior (54%) and Great Lakes (48%) regions. Its contribution to generation capacity growth over the last decade is somewhat smaller—but still significant—in the West (22%) and Northeast (21%), and considerably less in the Southeast (2%).

But remember what we learned about turbines getting better. In another report last year, DOE examined what new and improved turbines could mean for the amount of land suitable for wind power development. In the US, most turbines have a “hub height” of 80 meters. Around 110 meters is already common in Europe; 140 meters or so is state-of-the-art. (Here’s a mesmerizing time-lapse video showing the assembly of the tallest wind tower in the US, at 115 meters.)

Turns out, state-of-the-art turbines could increase the US land suitable for wind development by 67 percent.

Here’s a cool map. The dark blue is land where today’s most familiar, established turbines can achieve a minimum of 30 percent CF. Lighter blue areas are where the best of today’s turbines can do that. Orange is where state-of-the-art turbines can do it.

wind potential turbines

So wind is coming, even to the Southeast.

The optimistic scenario for US wind is as follows. Over the next five years, the PTC will phase out. That will drive a continuing surge in installations, as developers race to take advantage of it. That buildout will bring continuing improvements in cost and performance. Those improvements will outrun the decline in the PTC and wind will stand on its own two feet by 2020, even without a carbon price.

There are caveats, but it’s the weekend, so let’s just take our good news where we can get it.

Bonus additional ass kicking

Wind power is extraordinarily popular with the American people. This Morning Consult post rounds up some of the polling. Around 90 percent of Americans believe the government should encourage wind energy — and that includes 80 percent of Republicans (some of the top wind states are run by Republicans). Always worth remembering: Climate change is a controversial issue, divided along partisan lines, but clean energy is not. Everyone loves clean energy.

Wind power also employs a lot of Americans — 88,000, at last count. In fact, BLS says that wind turbine technician is the fastest growing profession in the country. The Dept. of Energy says wind power could support up to 380,000 jobs by 2030.
Europe has had a robust offshore wind industry for a while, but the US has lagged in that area — there are zero offshore wind turbines currently operating in the US. That may finally be changing, though. The first US offshore wind farm (a modest affair) is expected to begin operation this fall. And Massachusetts just passed a bill that would require its utilities to get 1,600 MW of their power from offshore wind over coming decades. It’s all happening.




Tagged on: